Multi-Task Learning as a Bargaining Game
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Training multiple tasks jointly can reduce computation costs and e K players, each equipped with its own utility function u,;. Task gradient —  Ag—»  Projection — S,
improve data efficiency, but it has a major challenge: gradients tend to e Players must find a point they all agree upon or default to the MGDA PCGrad CAGrad Nash-MTL LS PCGrad CAGrad MGDA Nash-MTL (Ours)

conflict in direction and differ in magnitude.
In multi-task learning (MTL) it is not clear how to combine the
gradients into a joint update direction.

disagreement point.

e Nash proposed an axiomatic approach and proved a unigue
solution exists with desired properties like Pareto optimality and
symmetry.

e This unique solution is called the Nash bargaining solution.

We propose Nash-MTL, a principled MTL approach, that views the

gradient aggregation step as a bargaining game. We consider a problem with two losses of different scales and

plot the optimization trajectory in objective space.
e Nash-MTL can find well balanced optimal solutions.

e Update direction obtained by various methods on three gradients.
e Nash-MTL produce an update direction, colored in blue, with the
most balanced per-tasks projections, marked in red.

Algorithm 1 Nash-MTL

Input: 6% — initial parameter vector, {¢; } X ; — differentiable
loss functions, 1 — learning rate

fort=1,...,7T do
Compute task gradients g = Vi-1)4;

Set G*) the matrix with columns g "
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In MTL, a joint model is trained to Task-specific

Task 1 Task K

simultaneously make predictions params. Solve for a (G®)TGWa — 1/ar to obtain al? We evaluate Nash-MTL on predicting 11 properties of molecules from We evaluate Nash-MTL on NYUv2, a scene understanding
for several tasks. Generally: \ / Update the parameters §®) = §) — nG®a® the QM9 dataset. | problem with three tasks.
e All tasks share an encoder ;{ne(:uf:; 5(T) e QM9 poses a S|gq|f|cant challenge for MTL methods since the e Nash-MTL achieves the best overall results.
(feature extractor). Shared ‘ number of tasks is large and because the loss scales vary
e Each task has a task-specific param significantly. Segmentation Depth Surface Normal

head. Nash-MTL e Nash-MTL achieves the best performance. micU+ PixAcet AbsEir| RelEer) -AnsleDistance] Within £° 1 MR | Am% |
, , , Mean Median 1125 225 30
Compared with single-task (STL) models, MTL can potentially: Our approach, Nash-MTL, uses the Nash bargaining solution as the STL 3830 63.76  0.6754 02780 2501 19.21  30.14 57.20 69.15
i ' . L 10% 1 LS 39.29  65.33 0.5493 0.2263  28.15 23.96  22.09 47.50 61.08 811  5.59
e Reduce ComPUtatlon costs at inference. update direction in MTL. : Nash-MTL (Ours)  =—— RLW SI 38.45  64.27 0.5354 0.2201  27.60 23.37  22.53 4857 62.32  7.11 4.39
i . . . IMTL-G — UW RLW  37.17  63.77 0.5759  0.2410  28.27 24.18  22.26 47.05 60.62 10.11  7.78
e Improve generalization and data efficiency. e Given an MTL problem with parameters 4. SIT WA DWA 391 6531  0.5510 02285 27.61 23.18 2417 50.18 62.39 6.88  3.57
. L . e AT s UW  36.87 63.17 0.5446  0.2260  27.04 22.61  23.54 49.05 63.65 6.44  4.05
A Common Approach to MTL e Search for update Ag direction in an €-ball around the origin.  GEm o CDA MGDA 3047 59.90  0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 544  1.38
| - . | | o ‘ PCGrad 38.06  64.64 0.5550  0.2325  27.41 22.80  23.86 49.83 63.14 6.88  3.97
e Define the utility for task 7 as a directional derivative u;(Af0) = A g;. L 10° GradDrop 39.39  65.12 05455 0.2279  27.48 22.96  23.38 49.44 6287 644  3.58
D te (G the matri hose columns are B ﬁ]s}lfag gggg gg.gg g'gjgg 83322 gg.gé giig 2;663 g?,?g gggi gﬁ 06236
. : : _ e Denote IX W U g;. - . : . : . : : : : : —0.
Most MTL optimization algorithms follow: , | K Nash-MTL 40.13 65.93  0.5261 0.2171 25.26 20.08  28.4 5547 68.15
1. Differentiate: compute per-task gradients g;, 7 = 1, ..., I\.
S t b.p Pd. t 'gt & tg'“ ) A _v Claim: The Nash bargaining solution for MTL is given byAQ—Zozzgz 2 . Multi-task RL
] 10* 4 A .
. Aggrega .e. combine gradients Into a joint direction Ausing s.t. GTGa = 1/a where 1/a s taken element-wise. : UItI-tasS
aggregation alg. A. 0 50000 100000 150000 200000 250000 _ _
3. Update the parameters according to A. Theoretical analysis: We prove that the sequence generated by our Step e MT10 environment with ten Success + SEM
thod t Daret timal (stationar i th tasks. STL SAC 0.90 & 0.032
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Our novel MTL algorithm views the aggregation step as a Bargaining (non-convex) convex case. _ MTL SAC+TE  0.54 % 0.047
=48 Proiect performance by a large margin. MH SAC 0.61 + 0.036
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to Qutperf()rm STL. PCGrad 0.72 £ 0.022
CAGrad 0.83 £ 0.045
Nash-MTL 0.91 =0.031




