

## Overview

We put forward a novel multi-objective optimization (MOO) setup which we term *Pareto Front* Learning (PFL): Learning the Pareto front using a single model that can be applied to any objective preference at inference time.

We propose Pareto Hypernetworks (PHN), a model for this setup based on hypernetworks.

## Multi-objective Optimization



Given losses  $\ell_1, ..., \ell_m$ , a solution  $\theta_1$  dominates a solution  $\theta_2$  if  $\theta_1$  is not worse on any loss, and improves at least one  $\ell_i$ . A solution is called *Pareto* optimal if it is not dominated. The set of all optimal solutions is called the *Pareto front*.

Each optimal solution is an intersection between the front and a preference vector. A Pareto optimal solution that lies on the preference vector is called *Exact Pareto* Optimal.





# Learning the Pareto Front with Hypernetworks

Aviv Navon<sup>\*1</sup> Aviv Shamsian<sup>\*1</sup> Ethan Fetaya<sup>†1</sup>

<sup>1</sup>Bar-Ilan University, Israel <sup>2</sup>NVIDIA, Israel

#### Pareto Hypernetworks

Hypernetworks are deep models that generate the weights of another (target) network.

Our hypernetwork h produces weights  $\theta_r$  for a given input preference vector  $\boldsymbol{r}$ .  $\theta_r$  is trained to be exact Pareto optimal w.r.t.  $\boldsymbol{r}$ .

#### Preference vector



Advantages: (i) Scalability: A single model covers the front; (ii) *Flexibility*: A user can switch between trade-off points during inference.

An Illustrative Example: Pareto front (black solid line) for a 2D loss space. Each colored dashed line ("ray") represents a possible preferences.



Top left: A single PHN model learns the entire Pareto front, mapping any given preference ray to its corresponding optimal solution.

## Gal Chechik<sup>†1,2</sup>

## Quality-Runtime Trade-off

Baseline models need multiple models to cover the front, yielding a trade-off between solution quality and overall runtime. PHN training takes nearly the same time as a single model, achieves superior or comparable quality (hypervolumne) as 25-40 baseline models, and is also  $10 \sim 50$  times faster.



Results

|                | HV ↑  | Run-time<br>(hours, Tesla V100) |                |                     | HV ↑          |             | Run-time<br>(min., Tesla V100) |
|----------------|-------|---------------------------------|----------------|---------------------|---------------|-------------|--------------------------------|
|                | NYUv2 |                                 |                | Multi-Fashion+MNIST | Multi-Fashion | Multi-MNIST |                                |
| JS             | 3.550 | $0.58 \times 5 = 2.92$          | LS             | 2.70                | 2.14          | 2.85        | $9.0 \times 5 = 45$            |
| PMTL           | 3.554 | $0.96 \times 5 = 4.79$          | CPMTL          | 2.76                | 2.16          | 2.88        | $10.2 \times 5 = 51$           |
| CPMTL          | 3.570 | $0.71 \times 5 = 3.55$          | PMTL           | 2.67                | 2.13          | 2.86        | $17.0 \times 5 = 85$           |
| EPO            | 3.266 | $1.02 \times 5 = 5.11$          | EPO            | 2.67                | 2.15          | 2.85        | $23.6 \times 5 = 118$          |
| PHN-LS (ours)  | 3.546 | 0.67                            | PHN-LS (ours)  | 2.75                | 2.19          | 2.90        | 12                             |
| PHN-EPO (ours) | 3.589 | 1.04                            | PHN-EPO (ours) | 2.78                | 2.19          | 2.78        | 27                             |

## Modeling Conflicting Objectives





### PHN Training