

Overview

Training neural networks with auxiliary tasks is a common practice for improving the performance on a main task of interest. Two main challenges arise in this multi-task learning setting: (i) designing useful auxiliary tasks; and (ii) combining auxiliary tasks into a single coherent loss. To tackle both challenges we propose AuxiLearn, a novel framework based on implicit differentiation.

Auxiliary Learning

- Aim at learning a main task of interest.
- Auxiliary tasks facilitate the learning of the main task.

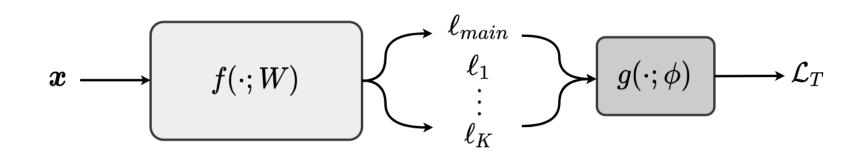
AuxiLearn

- Optimization of two networks: primary network $f(\cdot; W)$, and auxiliary network $g(\cdot; \phi)$.
- Bi-level optimization:

$$\phi^* = \arg\min_{\phi} \mathcal{L}_A(W^*(\phi)), \quad \text{s.t.}$$
$$W^*(\phi) = \arg\min_{W} \mathcal{L}_T(W, \phi).$$

where, $\mathcal{L}_T = \sum_i \ell_{main}(\mathbf{x}_i, \boldsymbol{y}_i; W) + h(\mathbf{x}_i, \boldsymbol{y}_i, W; \phi)$ and $\mathcal{L}_A = \sum_i \ell_{main}(\mathbf{x}_i, \mathbf{y}_i; W)$. Here h is the overall auxiliary loss.

Goal: Find auxiliary parameters, ϕ , such that a network trained using ϕ will generalize well.


Solution: Utilizing IFT with efficient approximations.

Auxiliary Learning by Implicit Differentiation Idan Achituve^{*1} Haggai Maron² Gal Chechik^{$\dagger 1,2$} Aviv Navon^{*1} Ethan Fetaya^{†1}

¹Bar-IIan University, Israel ²NVIDIA, Israel

Combining Losses

- Auxiliary tasks are given.
- AuxiLearn learns a deep auxiliary network over the losses. Here: $h(\cdot) = g(\boldsymbol{\ell}; \phi)$.
- Key advantages: (i) capture complex interactions between tasks; (ii) scales well with the number of tasks.
- An Illustrative Example:

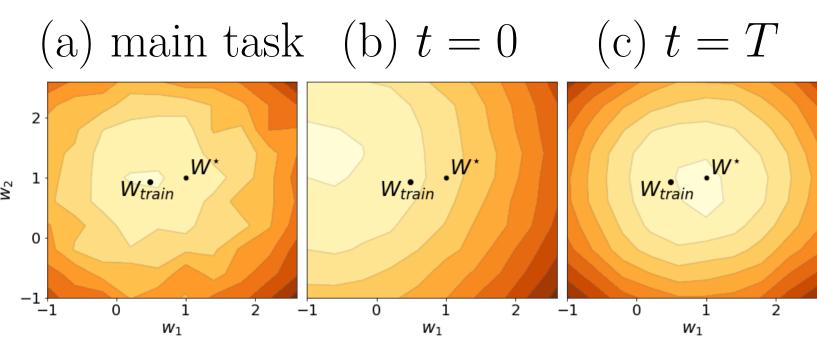
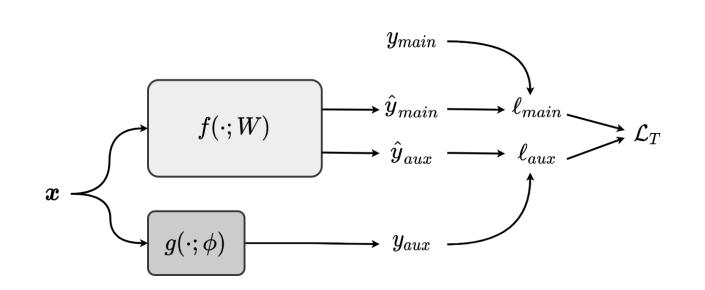



Figure: Loss landscape. Darker is higher.

- \blacktriangleright A regression task with two auxiliaries: one helpful & one harmful.
- ► AuxiLearn learns to ignore the harmful auxiliary and uses the helpful one to find a better solution.

Learning Auxiliary Tasks

- Often auxiliary tasks are not available.
- A teacher network g produces auxiliary labels.
- The primary network f is trained to predict the main and the learned auxiliary tasks.
- Using AuxiLearn we can generate auxiliary tasks. Here: $h(\cdot) = \ell_{aux}(f(\boldsymbol{x}; W), g(\boldsymbol{x}; \phi)).$

Results for Combining Losses

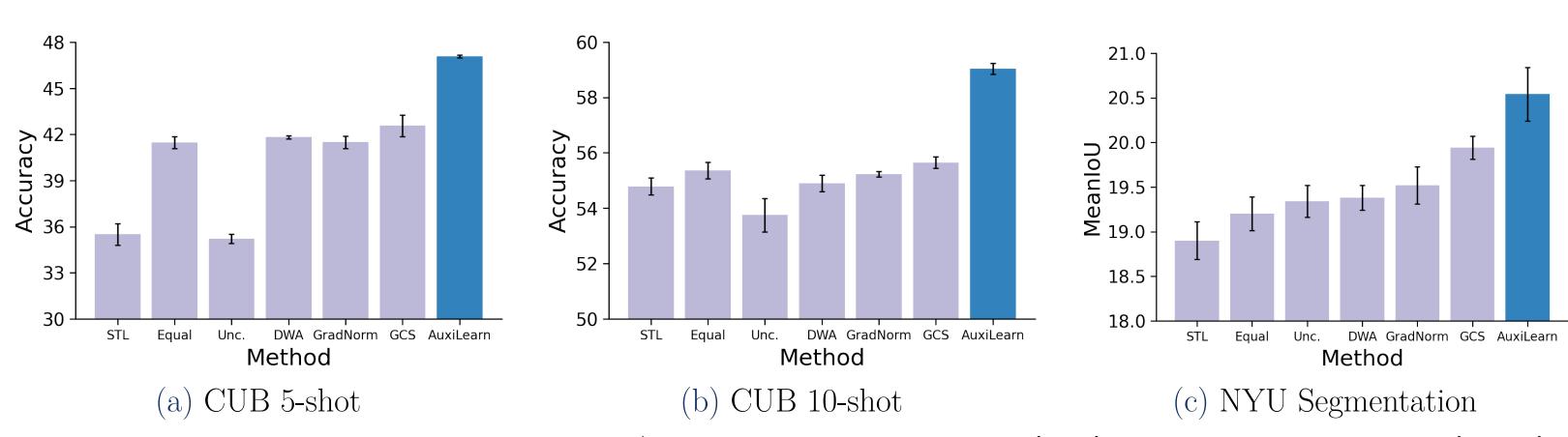


Figure: Results for CUB dataset with 5/10 labels per main class (left), and NYUv2 dataset (right).

In the CUB experiments:

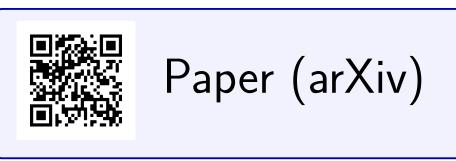
• The main task: fine-grained classification of 200 bird species.

• Auxiliary tasks: 312 binary visual attributes, such as breast color and bill length.

• Few labels per class for the main task, and auxiliary information is available for the entire dataset.

In the NYUv2 experiments:

• The main task: semantic segmentation


• Auxiliary tasks: depth estimation and surface-normal prediction

Results for Learning Auxiliaries

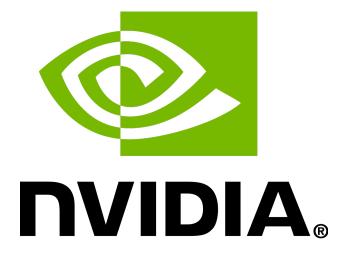

	CIFAR10 (5%)	CIFAR100 (5%)	SVHN (5%)	CUB (30-shot)	Pet (30-shot)	Cars (30-shot)
STL	50.8 ± 0.8	19.8 ± 0.7	72.9 ± 0.3	37.2 ± 0.8	26.1 ± 0.5	59.2 ± 0.4
MAXL-F	56.1 ± 0.1	20.4 ± 0.6	75.4 ± 0.3	39.6 ± 1.3	26.2 ± 0.3	59.6 ± 1.1
MAXL	58.2 ± 0.3	21.0 ± 0.4	75.5 ± 0.4	40.7 ± 0.6	26.3 ± 0.6	60.4 ± 0.8
AuxiLearn	60.7 ± 1.3	21.5 ± 0.3	76.4 ± 0.2	44.5 ± 0.3	37.0 ± 0.6	64.4 ± 0.3

Table: Learning novel classification auxiliary tasks.

- Learning novel auxiliary tasks from multi-class classification and fine-grained classification datasets.
- Setup: Using a small subset of the labeled data and learning a different multi-class classification auxiliary task for each class of the main task.
- AuxiLearn outperforms all baselines in all setups by a large margin.
- In the figure: 2D t-SNE projection of the learned labels for the classes *Frog* and *Deer*. AuxiLearn captures semantic features in the learned auxiliary labels.

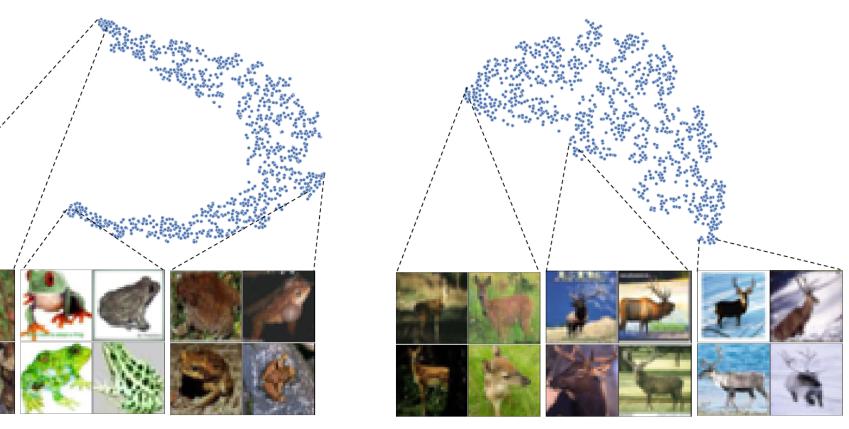


Figure: t-SNE over learned auxiliary labels.

